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Abstract
Amajor goal of human genetics is to elucidate the genetic architecture of human disease,

with the goal of fueling improvements in diagnosis and the understanding of disease patho-

genesis. The degree to which epistasis, or non-additive effects of risk alleles at different

loci, accounts for common disease traits is hotly debated, in part because the conditions

under which epistasis evolves are not well understood. Using both theory and evolutionary

simulation, we show that the occurrence of common diseases (i.e. unfit phenotypes with fre-

quencies on the order of 1%) can, under the right circumstances, be expected to be driven

primarily by synergistic epistatic interactions. Conditions that are necessary, collectively, for

this outcome include a strongly non-linear phenotypic landscape, strong (but not too strong)

selection against the disease phenotype, and “noise” in the genotype-phenotype map that

is both environmental (extrinsic, time-correlated) and developmental (intrinsic, uncorre-

lated) and, in both cases, neither too little nor too great. These results suggest ways in

which geneticists might identify, a priori, those disease traits for which an “epistatic explana-

tion” should be sought, and in the process better focus ongoing searches for risk alleles.

Author Summary

The contribution of epistasis, or non-additive effects of risk alleles at different loci, to com-
plex traits is much debated among human geneticists. In this study we use modeling and
simulation to identify when evolutionary forces should drive epistasis to become a major
part of the explanation for such traits. We simulate populations evolving in the presence
of “phenotypic noise”, i.e. intrinsic and environmental variability in the relationship
between genotype and phenotype, and focus specifically on traits that are substantially del-
eterious (e.g. fitness loss of at least 10%) and moderately common (population frequency
between 0.1 and 10%). These criteria describe much “common”, heritable human disease,
and knowing the expected contribution of epistasis to such diseases could greatly assist
efforts to use genome-wide genetic associations to identify their mechanistic underpin-
nings. Here we show that, provided that appropriate levels and kinds of phenotypic noise
are present during evolution, genetic contributions to disease traits can be expected to be
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strongly and synergistically epistatic, particularly among the most severely affected indi-
viduals in a population. By identifying scenarios most likely to select for synergistic epista-
sis, this study may help biologists identify when the extra effort is merited to search for
combinatorial genetic interactions in human disease.

Introduction
Patterns of inheritance suggest that genetic variation plays a central role in the etiology of com-
mon, serious diseases (e.g., autism, schizophrenia, multiple sclerosis, diabetes). Yet genetic vari-
ants found by GenomeWide Association Studies (GWAS) typically explain only a small
proportion of the heritability of such disorders [1]. Some have proposed that causative alleles
elude discovery because their effect sizes are too small, or because they are not included among
the variants that are normally ascertained. Another proposed reason is epistasis, i.e. the combi-
natorial action of variants at different genetic loci, such that they contribute significantly to dis-
ease only when they appear together in an individual [2–4]. Epistasis, also referred to as gene-
gene interaction, can be exceedingly difficult to detect in GWAS—due to computational as well
as statistical challenges [5,6]—and much debate exists about the extent to which efforts should
be made to search for it.

Epistasis is common in the experimental genetics of model organisms, but one cannot simply
extrapolate the behaviors of the large-effect alleles favored by experimental geneticists to the
small-effect alleles thought to dominate the landscape of standing genetic variation (the fact that
a continuous function can be approximated as linear over a small enough interval implies that,
as selection drives the effect sizes of alleles toward zero, non-linear interactions—i.e. epistasis—
should become insignificant). Although quantitative-trait-locus mapping in populations of
model organisms has verified the existence of substantial epistasis among two [7–10] and even
three or more genes at a time [11], the number of replicated examples of strong epistasis under-
lying human traits—particularly disease traits—is modest [12,13]. Whether this paucity of exam-
ples reflects the methodological difficulties (e.g. lower statistical power) inherent in working
with human populations, or the fact that the major genetic causes of disease lie elsewhere (e.g.
among rare, large-effect variants) is one of the most hotly debated questions in human genetics.

Progress toward addressing this question could be enhanced if investigators knew when and
where to look for epistatic interactions in the human genome. One tactic is to use existing mech-
anistic knowledge—e.g. known biochemical or genetic pathways associated with the physiology
disrupted by disease—to narrow the search, thereby improving statistical power [6]. The draw-
back to this approach is that, by working only outward from what we know, we sacrifice much
of the ability to detect anything radically new. An alternative approach is suggested by the fact
that epistasis, when present, must have evolved, i.e. come into being via the usual forces of muta-
tion, drift, and natural selection. If we could determine the circumstances under which diseases
with a strong epistatic genetic component do and do not evolve, we might be able to use that
information as additional prior knowledge in genetic association studies.

The evolution of epistasis has previously been investigated by several groups, who have
reached a variety of conclusions about it, not all of which are mutually compatible [14–18].
The approach in the present study differs from that prior work in that it is focused not on the
typical or average behaviors of populations, nor on traits in general, but rather on genetic dis-
eases—by which we mean traits that should be under strong negative selection—and popula-
tions in which disease incidence is in the range of many common, serious human diseases, i.e.
between 0.1% and 10%. Using both theoretical analysis and evolutionary simulation, we find
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that the extent to which epistasis explains a disease phenotype depends on the nature of the
interaction between gene products (i.e. the biochemistry), the strength of selection on the trait,
and especially on the nature and magnitude of stochastic and environmental fluctuations that
influence gene function.

Results

Measures of Epistasis
To quantify epistasis is to capture the degree to which phenotypes cannot be accounted for by
summing the phenotypic effects of variation at multiple genes, but one may approach this task
in multiple ways. Among population geneticists, it is traditional to calculate the proportion of
phenotypic variance, σ2, that can be explained by an additive model, i.e. h2

pop ¼ s2
A=s

2, where

s2
A represents the maximum variance that a linear model can produce, as determined by linear

regression (Section 1 in S1 Text). The quantity h2
pop is termed the additive, or narrow-sense, her-

itability, and if non-genetic contributions to variance can be neglected or corrected for (a situa-
tion that we denote by an asterisk in what follows), 1� h2

pop� captures what is traditionally

termed “statistical epistasis”.
Alternatively, if one assumes that a particular phenotype or set of phenotypes may be

treated as reference (i.e. “wildtype”), one may measure epistasis from the standpoint of an indi-
vidual. For example, if Z(g) represents the phenotype associated with a given genotype, g, then
for a phenotype controlled by two loci, we may define

hind�ðx; yjx0; y0Þ ¼
½Zðx; y0Þ � Zðx0; y0Þ� þ ½Zðx0; yÞ � Zðx0; y0Þ�

Zðx; yÞ � Zðx0; y0Þ
; ð1Þ

where hind�(x,y|x0,y0) represents the proportion of phenotypic difference between genotype x,y
and reference genotype x0,y0 that is due to additive effects (extension to a greater number of loci
is straightforward). The asterisk in (Eq 1) reminds us that this definition neglects non-genetic
contributions to the phenotype, generalization to which will be introduced later. In this case, 1 −
hind� measures what is often termed “functional epistasis”. Unlike statistical epistasis, functional
epistasis may be further classified as synergistic (hind� < 1) or antagonistic (hind� > 1).

Although (Eq 1) is defined in terms of the genotype of a single individual, relative to a single
reference, it is straightforward to generalize it to collections of “cases” and “controls”, as we in
fact do later. Thus, the primary difference between functional and statistical epistasis is not that
one is population-centered and the other is individual-centered, but rather that functional epis-
tasis focuses on the causes of variation from a pre-specified “wild” or “normal” state, whereas
statistical epistasis focuses on the structure of variation within a population overall. From the
standpoint of understanding the molecular causes of human disease, or predicting who will
develop disease, functional epistasis is the more relevant quantity, as foreknowledge of a “nor-
mal” phenotype, or range of phenotypes, is implicit in the notion of disease. It is thus the evolu-
tion of functional epistasis that we are most concerned with here.

On the other hand, statistical epistasis is closely tied to the mechanics of evolution, because
it is h2

pop� that effectively determines how natural selection acts on phenotypic variation [19].

This makes it relatively straightforward to develop insights about how statistical epistasis
evolves, but such insights may be unhelpful with regard to functional epistasis, because the lat-
ter can exist in the absence, or near absence, of the former, e.g. [14,20–22]. How this can hap-
pen is shown in Fig 1.

Fig 1A depicts an arbitrary two-dimensional phenotypic landscape (i.e. allele values for each
of two genes are on the independent axes, and phenotype value is on the dependent axis) and
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illustrates how hind�(x,y|x0,y0) simply reflects the nearness of Z(x,y) (top-most point of colored
landscape) to the plane formed by Z(x0,y0), Z(x0,y) and Z(x,y0) (black surface visible directly
below Z(x,y)). On the other hand, h2

pop� reflects how well the landscape is fit by a plane (translu-

cent surface in Fig 1B), where the fit is weighted by the population distribution (a sample from
one possible population distribution is shown in Fig 1C). In order for any sort of epistasis to
occur, the landscape must be non-linear, but a large discrepancy between hind� and h2

pop� can

occur at genotypes where the non-linearity is strong while the population density is low.
For example, it is relatively easy to construct scenarios in which nearly all of the phenotypic

variation displayed by “diseased” individuals is explained by functional epistasis, even though
there is little statistical epistasis in the population as a whole (Fig 1D). Even if diseased individ-
uals represent as much as 50% of a study population (as in the artificially selected populations
of “cases” and “controls” that are assembled for GWAS), statistical epistasis can still be well

Fig 1. Epistasis at the individual versus population levels. (A) Functional epistasis. A phenotypic
landscape (colored surface) is defined by Eq (S10) with ξ = 0.5 and n = 2. Allele values represent a
quantitative measure of gene function given that the genotype is that allele. The difference between the
phenotype value associated with two alleles (Z(x,y)), and the plane formed by the phenotype values of
wildtype (Z(x0,y0)) and single-variant (Z(x0,y) and Z(x,y0)) genotypes (shown in black), provides a local
measure of epistasis. (B) Statistical epistasis. Linear regression determines a best-fit plane (translucent
surface; see Eq (S2)) that depends upon the distribution of genotypes in the population. (C) A sample from
the population used to perform the regression in B; individuals (circles) are colored according to their
phenotype values. The population distribution is that defined by Eq (S11), with λ = 0.2 (D) Low statistical
epistasis can exist in the presence of high functional epistasis. Here functional epistasis (evaluated with
respect to the genotype (x0,y0); see panel A) has been averaged over all case individuals, defined as the 1%
of the population with the greatest phenotype values. The parameter ξ was varied while the other parameters
were held fixed at n = 1, λ = 0.2, C = 1 (see Eq. (S10) and (S11)).

doi:10.1371/journal.pgen.1006003.g001
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below the level of functional epistasis of the cases, relative to the controls (S1A and S1B Fig;
section 2 in S1 Text). In our evolutionary simulations, described below, we typically choose a
phenotypic threshold between health and disease that assigns ~1% of the population to the lat-
ter category, consistent with the ascertainment level of many “common” human disorders. We
thus focus on the questions of when, in the course of evolution, situations should arise in
which functional epistasis is large among a subset of individuals of this magnitude.

Epistasis Is Selected against in the Simple LP Model
We began by considering a particularly simple model of non-additive gene-gene interaction—
the Limiting Pathway (LP) model—that can be applied to a variety of biological processes [23].
In this model, a trait with value z depends on the rate-limiting value of a number of genetically
controlled inputs, e.g., in the case when the number of inputs is two, z = Min[x, y], where x and
y represent the inputs from two genes (Fig 2A). These might represent the expression levels of
two different polypeptides that combine to form a multi-subunit protein, the abundance of
which is given by z. Alternatively, x and y could represent rates of synthesis of small molecules,
such as enzyme cofactors, that catalyze a process occurring at rate z. For systems involving
more than two inputs, we have z = Min[x1, x2, x3. . .], but for simplicity we will focus here on
the two-component model.

We assume there is an optimal phenotype value, zopt, and that the trait quantified by z is
under stabilizing selection, so that fitness is reduced when z falls above or below zopt. Thus, at
evolutionary equilibrium, we expect the wild-type levels of the gene products, which we will
call x0 and y0, to be such that Min[x0, y0] = zopt. The representation of this condition on the
phenotypic landscape, i.e. the intersection of the plane z = zopt with the function z = Min[x, y],
defines two perpendicular “arms”, meeting at a “corner” (green dashed lines in Fig 2A).

Only when populations reside near this corner, i.e., x0 � y0, can significant epistasis occur.
For example, under such conditions mutations that increase x or ymay have little phenotypic
effect individually, but a large effect in combination (synergistic epistasis). In contrast, for a
population residing on one of the arms—e.g., x0>>y0, corresponding to the horizontal arm in
Fig 2A—mutations that increase or modestly decrease x will have no phenotypic effect; muta-
tions that affect y will alter z proportionately; and the combined effect of both mutations will
be no different from the sum of their individual effects.

For any pair of wild-type input values (x0, y0) and mutation effect sizes (Δx, Δy), we may
quantify the magnitude of functional epistasis as 1 –hind�(x0 + Δx0,y0 + Δy0 | x0,y0), according
to (Eq 1), as described above. For a given mutation effect (Δx = Δy> 0), we repeat this calcula-
tion for different combinations of wild-type values x0 and y0, to produce an epistasis map (Fig
2B). Asking whether epistasis will tend to evolve in the LP model thus amounts to asking
whether input values in natural populations will evolve towards and remain at the corner in
Fig 2A. Re-plotting Fig 2A in terms of fitness, which we take to be the following generic func-
tion of phenotype value

wðzÞ ¼ exp �s ln
z
zopt

 !2 !
; ð2Þ

(where the strength of stabilizing selection is quantified by s) yields an L-shaped ridge on
which any point along the ridge is equally and maximally fit (Fig 2C). Given this fitness land-
scape, our naïve expectation might be that, under selection and drift, populations should follow
a random walk along the ridge, with individual input values equally likely to be clustered
around any ridge location.

Noise-Driven Selection for Synergistic Epistasis

PLOS Genetics | DOI:10.1371/journal.pgen.1006003 April 28, 2016 5 / 29



www.manaraa.com

However, evolutionary simulations (see Methods) show that selection drives populations
away from the corner and out onto the arms of the ridge (Fig 2D). To understand why, note
that at “arm” locations where y<< x, mutations affecting x will be selectively neutral. But if
the population is close to the corner, such that y< x< y + σμ, where σμ is the typical mutational
step size, mutations that reduce x will be deleterious. Because of the increased frequency of del-
eterious mutations near the corner, natural selection disfavors genotypes with input values

Fig 2. Epistasis does not evolve in the simple LPmodel. (A) Phenotype value as a function of input
values in the simple LP model, z = Min[x,y]. Lighter shading represents higher phenotype values. (B) At each
combination of x and y, we calculated the contribution of epistasis to the change in phenotype resulting from a
30% increase in each input value. Near the diagonal, the "sign" of local functional epistasis depends on
whether mutations increase or decrease x and/or y. Mutations that increase (decrease) both x and y result in
synergistic (antagonistic) epistasis. The nature of epistasis between a mutation that increases one input
value and a mutation that decreases the other will depend on the precise values of x and y. (C) Fitness
landscape given by (Eq 2), with the optimal value of z being zopt = 1 and the strength of selection being s = 1.
Lighter shading represents higher fitness. (D) Simulated time course of a population evolving along the
optimal-fitness ridge indicated by the green dashed lines in C. The population-mean input values (i.e.
average of individual (x,y) values weighted by their corresponding frequencies in the population) were
calculated every 200,000 generations and their ratio (y/x if y>x; x/y if x>y) recorded on the vertical axis, which
indicates how far the population center of mass is from the corner of the ridge. The green band and curve
indicate the minimum, maximum, and median values from five independent simulations with an average
mutational effect size of σμ = 0.1. The blue band and curve correspond to a larger mutational effect size (σμ =
1.0). The region around the corner over which we expect to observe functional epistasis is limited by the
effect size of a typical mutation (indicated by the horizontal dashed lines drawn at a distance of σμ from the
corner). Initially, all individuals in the population lie at the corner (x = y = 1).

doi:10.1371/journal.pgen.1006003.g002
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within σμ of the corner (compare shaded regions at long times with horizontal dashed lines in
Fig 2D). It follows that the population is least likely to be found precisely where epistasis is
strongest.

AMore Biologically Realistic LP Model
Is the evolutionary instability of epistasis in the LP model something common to all genotype-
phenotype relationships in which strong synergistic epistasis can arise? Or is the LP model, as
currently formulated, insufficiently general? To approach this question, we explored two modi-
fications of the LP model.

First, we generalized the phenotype function with the aid of parameter k, which allows us to
vary the strength of interaction between pathways:

z ¼ 1

2
ðkþ x þ y �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ x þ yÞ2 � 4xy

q
Þ ð3Þ

When k = 0, (Eq 3) reduces to the simplified LP model, i.e. z = Min[x,y]. If x and y were to rep-
resent the concentrations of two reactants, and z the concentration of their product, then k
would represent the corresponding biochemical dissociation constant. In this interpretation, if
we choose our units so that zopt = 1, k>> 1 would correspond to weak binding while k<< 1
would be tight binding. We may also interpret x and y in (Eq 3) as rates of synthesis of gene
products, though the physiological meaning of k would then be different, incorporating bind-
ing and rates of degradation. As shown in Fig 3A and 3B, the effect of increasing k is to make
the corner in the fitness landscape more round. This increases (for any given mutational step
size) the range of values of x and y over which significant epistasis will occur, but also decreases
the maximum potential magnitude of that epistasis.

Second, we added phenotypic noise into the model. By noise we mean processes that add
randomness into the genotype-phenotype relationship. For purposes of this analysis, we divide
noise into two categories: developmental and environmental.

By developmental noise, we mean processes that affect each individual in the population
independently and are not substantially correlated between parents and offspring (Fig 3C). An
example of developmental noise would be idiosyncratic variation in the biochemical processes
underlying development, such that individuals with identical genotypes do not necessarily dis-
play identical phenotypes. Other factors that could contribute to developmental noise by this
definition would include micro-environmental effects that vary from individual to individual
and genetic variation at loci not explicitly incorporated into the model (assuming high
recombination).

By environmental noise, we mean processes that have a coordinated effect on all individuals
in a population, and may persist from one generation to the next (Fig 3D). Processes like cli-
mate change, dietary change, and cultural change, which have the potential to fluctuate on
time scales of many generations, would fall into this category. Although it is common to model
such processes as perturbations to the fitness (i.e., “fluctuating selection”, e.g., [24]), we model
these processes as perturbations to phenotype, in order to facilitate comparison between the
two classes of noise.

Accordingly, we take noise generally to be a process that transforms an individual’s nominal
input values (the values of x and y dictated by the individual’s genotype; white circles in Fig 3C
and 3D; S2A and S2C Fig) into an effective set of input values (red circles in Fig 3C and 3D;
S2B and S2D Fig) that produce, via (Eq 3), an altered phenotype. The effective input values can
be thought of as the set of values that would produce the observed phenotype in the absence of
any noise.

Noise-Driven Selection for Synergistic Epistasis
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Motivated by the fact that cell-to-cell variation in the levels of gene products is often found
to fit log-normal distributions [25,26], we implement developmental noise in x, say, via the
transformation

lnxe ¼ lnx þ Dx ð4Þ

where Δx is drawn from a normal distribution with mean zero and variance σdev
2 (Fig 3C;

inset). Perturbations to y are performed independently using the analogous transformation.
With environmental noise, the same perturbation affects the x- and y-values of all individu-

als in the population (Fig 3D; inset). Although that perturbation is also drawn randomly (this
time from a zero-mean Gaussian with standard deviation σenv), it is not re-drawn at random
every generation, as environmental effects may vary on slow time scales. Details of how this is
modeled are provided in the Methods section, but for all results presented in the main text the
Δx and Δy values for environmental noise have an autocorrelation time of 27 generations.

Fig 3. The generalized LPmodel. (A, B) Epistasis landscape (red shading) and common contours of the
phenotype and fitness landscapes (black lines) for k = 0.005 (A) and 0.5 (B). (C, D) Schematic illustrating how
phenotypic noise can be viewed as random perturbations of the input values, transforming nominal values
(white) into effective values (red). The magnitudes of the perturbations are drawn from a Gaussian
distribution defined on the natural logarithm of gene levels (insets). This sampling process is repeated for
each individual independently (developmental noise; C) or performed once for all individuals (environmental
noise; D); see Methods.

doi:10.1371/journal.pgen.1006003.g003
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Noise Stabilizes the Corner
How should we expect phenotypic noise to affect population dynamics on the generalized LP
landscape? So long as the autocorrelation time of phenotypic noise is short relative to the time-
scale on which natural selection drives genetic change, we can approximate the effect of natural
selection on a particular combination of input values by averaging over their different fitness
realizations due to noise. The resulting “effective fitness”measures how robust the phenotype
(and nominal fitness) of that particular set of input values is to random variation of their values.

When we compute this effective fitness landscape, we find a narrow peak at the corner for
k = 0 (Fig 4A) that develops into a broad peak at k = 0.1 (Fig 4B). Though a peak at the corner is
intuitively expected to localize the population there, it is less clear how the shape of the peak
affects localization. Since the motion of the population is driven by fitness differences, a narrow
peak (and a steep fitness gradient) should exert a strong force driving the population towards
the corner. Yet that force can only be felt in the immediate vicinity of the corner, potentially
allowing populations located elsewhere to drift away from the corner. On the other hand, though
a broad peak exerts a weaker force (due to its shallower fitness gradient), its range of influence is
greater, potentially drawing populations to the corner that would have otherwise escaped it.

To find out which landscape best stabilizes the corner at steady state, we mapped the evolu-
tion of a population on the 2D effective fitness landscape to a 1D random walk problem (Sec-
tion 3 of S1 Text). The random-walk theory predicts that localization at the corner depends
monotonically on k, with the greatest degree of corner localization expected at the smallest val-
ues of k (Fig 4D)—precisely the conditions under which epistasis is strongest (Fig 3A). Assum-
ing that k is low enough, we next asked how corner localization depends on the noise level, by
which we mean the width of the Gaussian from which the phenotypic perturbation is drawn
(σdev or σenv; Fig 3C and 3D). When the noise level drops below 0.1, the random walk is effec-
tively unbiased, with the effective fitness profile being approximately flat (Fig 4E) and the prob-
ability of finding the walker at least a given distance from the corner falling linearly with
distance (Fig 4F).

The random-walk theory, though providing significant insight, is an approximation that is
expected to hold only when the product of the population size and the mutation rate is small,
i.e. Nμ<< 1. To address more general conditions, we examined the population dynamics
using evolutionary simulations. Time courses plotted from individual simulations show that
both developmental and environmental noise are effective at localizing the population in prox-
imity of the corner (where epistasis can arise) when the interaction parameter, k, is small
enough (Fig 5A and 5B; see also S2E and S2G Fig). To summarize the degree of corner localiza-
tion under a given set of parameter values, we sampled simulations at intervals of 2N genera-
tions (where N is population size) and computed the fraction of simulations where the
population is at least a given distance from the corner (Fig 5C and 5D). For both developmental
and environmental noise, simulated data confirm the general trend predicted by the random-
walk theory: the sharper the corner (and the greater the potential for strong epistasis), the
more effective phenotypic noise is at localizing the population there (see also S4 Fig).

We repeated the evolutionary simulations for a range of noise levels, either pure develop-
mental or pure environmental. Fig 5E shows that the dependence of corner localization upon
developmental noise is remarkably similar to that predicted by the random-walk theory (Fig
4F). However, when the phenotypic noise is environmental, the results of theory and simula-
tion diverge. Evolutionary simulations show that corner localization depends non-monotoni-
cally on environmental noise level such that only intermediate noise levels (σenv � 0.1) hold the
population near the corner (Fig 5F). In contrast, the theoretical dependence on noise level was
always monotonic (Fig 4F).

Noise-Driven Selection for Synergistic Epistasis
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The accuracy of random-walk theory in predicting the role of developmental but not envi-
ronmental noise in simulations reflects the fact that the theory takes as input an effective fitness
landscape representing the average effect of phenotypic noise. While such averaging is expected
to faithfully capture pure developmental noise, which is independently realized for each indi-
vidual and at each generation (Fig 3C), this approximation does not account for the correla-
tions (among individuals and across generations) intrinsic to our implementation of
environmental noise (Fig 3D).

Fig 4. Phenotypic noise stabilizes the corner in the random-walk approximation. (A, B) Contours of the
effective fitness landscape,we(x,y), for k = 0 (A) and k = 0.1 (B). Effective fitness resulting from phenotypic
noise is computed at any given position by averaging neighboring fitness values using a rotationally
symmetric normal distribution (on log-transformed input values) with a standard deviation (“noise level”) of
0.2. Contour lines correspond towe = 0.5, 0.8, 0.99. (C) Normalized effective fitness profiles,we(x’)/we(0),
along the pseudo-horizontal arm of the optimal fitness ridge, projected onto the x-axis and shifted horizontally
so as to align the corners. x’ = lnx. (D) Probabilities that the population is found at least the indicated
distances from the corner. (E, F) Same as panels C and D, respectively, except now the noise level is
changed while the interaction constant is kept fixed at k = 10−4. Throughout, population size is N = 5000,
optimal phenotypic value is zopt = 1 and selection factor is s = 1.

doi:10.1371/journal.pgen.1006003.g004

Noise-Driven Selection for Synergistic Epistasis
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In summary, both theory and simulation show that phenotypic noise drives populations to
the corner of the generalized LP fitness landscape, with the greatest degree of corner localiza-
tion expected at the smallest values of k—the same condition under which the genotype-phe-
notype map is most nonlinear (Fig 3A). Though such nonlinearity is clearly a necessary
condition for generating epistasis in individuals of the population, it is certainly not sufficient.
To shed light on human disease biology, we next engaged the full power of our simulations to
determine the conditions under which individuals affected by disease exhibit epistasis relative
to healthy controls, and the frequencies at which such individuals may arise.

Fig 5. How the character of phenotypic noise affects corner stabilization in simulations. (A, B) The full
evolutionary model (see Methods) was used to simulate time courses of the population center of mass (solid
lines) for two different values of the interaction constant, k, subject to either pure developmental noise (A) or
pure environmental noise (B). The proximity of the corner within which epistasis is expected is indicated by
the horizontal dashed lines drawn at a distance of σμ = 0.1 from the corner. (C–F) The probability that the
population is at least a given distance from the corner for various values of k (C, D), and various levels of
developmental and environmental noise, σdev and σenv, respectively (E, F). In A and C, the phenotypic noise
level is σdev = 0.1; in B and D it is σenv = 0.1. In E and F, k = 10−4, and the black dashed line is the limiting case
of no phenotypic noise (σdev = σenv = 0). Mutational step size in C–F was σμ = 1. Throughout, data in the left
and right columns correspond to purely developmental and purely environmental phenotypic noise,
respectively.

doi:10.1371/journal.pgen.1006003.g005
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Expectations for Epistasis in Case-Control Studies
Wemodeled case-control studies of common disease (prevalence� 1%) by sampling individu-
als with extreme and typical phenotype values (Fig 6A; S2 Fig), which we denoted “cases” and
“controls”, respectively. For each case individual, we partitioned the difference between its phe-
notype value, zcase, and the phenotype associated with the median input values of the control
samples, zcontrols, into a fraction corresponding to the difference in nominal input values,

Hind ¼
zH � zcontrols
zcase � zcontrols

; ð5Þ

which we refer to as the “heritability”, and a non-heritable fraction, 1-Hind. The quantity zH
represents the heritable phenotype of the case individual, which we approximated by its pheno-
type value before developmental noise was added (Fig 6B). In contrast, environmental noise is
not expected to affect phenotype heritability assessed either within a generation (since geneti-
cally identical individuals have the same phenotype even after the addition of environmental
noise) or between two consecutive generations (since environmental noise persists over many
generations). Note that Hind, closely resembles the concept of broad-sense heritability as used
by human geneticists, but is defined here at the level of a single individual, rather than the pop-
ulation as a whole. We can naturally partition Hind into an additive fraction,

hind ¼
ðzx � zcontrolsÞ þ ðzy � zcontrolsÞ

zcase � zcontrols
; ð6Þ

and an “epistatic fraction”,Hind—hind, where zx and zy represent the phenotype values of the
single mutants defined by the heritable input values of the case individual (Fig 6B).

Epistatic fraction is a generalized measure of functional epistasis that is valid in the presence
of phenotypic noise. To see this, note that, in the absence of noise,Hind reduces to 1 and hind
reduces to hind�(x,y | x0,y0), where hind� is defined by (Eq 1) and the input values (x, y, etc) are
determined by the relations Z(x,y) = zH = zcase and Z(x0,y0) = zcontrols. ThusHind—hind reduces
to 1—hind�, which is the definition of functional epistasis presented earlier. The no-noise limit
is instructive for another reason: it turns out that hind� evaluated at one population standard
deviation relative to the median control sample directly determines the narrow-sense heritabil-
ity used in human genetics, h2

pop� (S1C Fig; see also Section 1 in S1 Text).

We measured the epistatic fraction of case-control phenotype difference, Hind—hind, and
the fitness (given by (Eq 2), normalized by the mean fitness of the control samples) for each
case individual and for each time point sampled during the course of our evolutionary simula-
tions. Fig 6C (data aggregated over all time points) and 6D (data stratified by time point) both
show that, though the vast majority of individual case phenotypes are largely additive (Hind �
hind), significantly unfit case individuals (i.e. fitness< 0.9) are always predominantly epistatic
(Hind—hind > 0.5) with respect to controls. Put another way, although severe disease may arise
infrequently in these simulations, when it does, the explanation for it is generally epistatic.

Because these evolutionary simulations keep track of individual mutations across genera-
tions, we can also calculate the frequency, in simulated populations, of the individual alleles
that account for the epistatic interactions that give rise to unfit cases. As S5 Fig. shows, alleles
involved in producing exceedingly unfit individuals (fitness< 0.75) tend to be relatively rare
(frequency between 0.2% and 0.5%), whereas in somewhat less severely unfit cases (fitness
between 0.75 and 0.9), causal alleles may display frequencies>1%, in the range of frequencies
associated with minor alleles that can be followed in GWAS.

Fig 6E shows how the epistatic fraction, Hind-hind, averaged over all substantially unfit
cases (those with relative fitness< 0.9), varies with changing levels of phenotypic noise. In
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Fig 6. When to expect epistasis in case-control studies. (A) Distribution of effective input values among all individuals (green) in a simulated population
and conditioned upon individuals being “cases” (pink) or “controls” (dark blue). Cases consist of the 1% of the population with the highest phenotype values;
500 controls are sampled from the 50% of the population whose phenotype values lie between the 25th and 75th percentiles. The area of each circle is
proportional to the number of individuals whose effective input values fall within a square bin at the circle’s location. Other parameter values are zopt = s = 1;
N = 5000; k = 0.01; σμ = 0.1; σdev = 0.1; σenv = 0. (B) Illustration showing how phenotype differences between cases and controls are partitioned into heritable
(additive plus epistatic) and non-heritable components (see main text). zcontrols represents the phenotype of a hypothetical control whose position is given by
the median of the effective input values (i.e. including developmental noise) of all actual controls. (C) Joint distribution of the epistatic fraction,Hind—hind, and
fitness (relative to mean control fitness) over all cases (top 1% of phenotypes) and all sampled time points. The color of each pixel reflects the number of
cases with the corresponding fitness and epistasis values. Parameter values are k = 0 and σdev = σenv = 0.05. (D) Joint distribution of epistasis and fitness of
cases (top 0.5% of phenotypes) for each of three time points, t1, t2, t3, distinguished by color. Parameter values are σdev = σenv = 0.05. (E—G) Heat maps with
intensity representing epistatic fraction, Hind—hind (E, G) and heritability,Hind (F) averaged over all cases with relative fitness < 0.9 and all sampled time
points. In G, the y-axis indicates the total noise level s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
dev þ s2

env

p
, with σdev = σenv, and σμ = 1. (H) Distribution over all sampled time points of epistasis

and fitness (each averaged over all cases at the corresponding time point). Colored data points correspond to the three time points sampled in panel D. (I)
Same as H but, at each sampled time point, case phenotype and case fitness were assessed immediately after an abrupt 5-fold increase in selection strength
from s = 1 to s = 5. The corresponding fold change in relative fitness of each case is approximatelyw(s'/s)-1 (which follows from (Eq 2)), wherew is the relative
case fitness prior to the selection shift. See also S12 Fig. Parameter values in H and I were k = 0; σμ = 1; σdev = σenv = 0.05.

doi:10.1371/journal.pgen.1006003.g006

Noise-Driven Selection for Synergistic Epistasis

PLOS Genetics | DOI:10.1371/journal.pgen.1006003 April 28, 2016 13 / 29



www.manaraa.com

the absence of developmental noise (vertical axis of Fig 6E), strong, synergistic epistasis
(<Hind-hind>> 0.5) is observed only when environmental noise is of intermediate strength,
because only then is the population localized to the corner (Fig 5F). More surprising, at first
sight, is the fact that, in the absence of environmental noise (horizontal axis of Fig 6E), devel-
opmental noise must also be of intermediate strength, and is even more constrained than
environmental noise (compare the extent of the red region along the two cardinal axes in
Fig 6E). This constraint on developmental noise level originates in a trade-off between its
effects on corner localization and (total) heritability, Hind. In the absence of environmental
noise, modest developmental noise localizes the population to the corner (Fig 5E), favoring
epistasis (σdev<0.075; Fig 6E); on the other hand, large-amplitude developmental noise kills
heritability (Fig 6F; S2A Fig), and with it, epistasis (σdev>0.075; Fig 6E), which is bounded
above by heritability (recall that heritability, Hind, is partitioned into an additive portion, hind,
and an epistatic portion, Hind-hind). Thus, there is a range of developmental noise levels
(σdev�0.05–0.10; Fig 6E) capable of localizing the population near the corner while preserv-
ing heritability.

How does the degree of epistasis among unfit (fitness<0.9) cases depend upon the other
key ingredient of the extended LP model—the interaction parameter, k? While decreasing k
below 0.01 does not affect corner stability (S4 Fig), it does increase the mean epistatic fraction,
<Hind-hind> significantly (S6 Fig; also compare Fig 3A with 3B). Thus, by making the LP land-
scape as nonlinear as possible, by sending k to zero, one maximizes the strength of epistasis one
expects to observe in unfit case individuals.

The fact that the relative fitness of a case individual is such a strong predictor of its probabil-
ity of being epistatic (Fig 6C and 6D and S7 Fig) prompted us to ask how epistasis is affected by
the degree to which a trait is under selection, as measured by the selection factor, s, in (Eq 2).
Fig 6G shows that the trait of interest must be under a certain amount of selection before we
may expect strong epistasis among severely affected cases. That level of selection varies

inversely with the level of phenotypic noise, s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
dev þ s2

env

p
, as indicated by the red band in

Fig 6G. In fact, this figure shows that epistasis depends primarily on the product sσ2 (see also
Section 4 in SI), so that increasing the strength of selection is equivalent to increasing the noise
variance. Epistasis is greatest for intermediate values of sσ2 (in the vicinity of 0.005), as previ-
ously seen in Fig 6E, which varies σ while holding the selection factor fixed at s = 1.

In summary, evolutionary simulations indicate that strong synergistic epistasis can underlie
disease that arises in populations evolving on a generalized LP landscape. Neither disease nor
epistasis tend to arise frequently, but when they do, they correlate; moreover, the strength of
that correlation is a function of the severity of the disease. As a result, epistatic, rather than
additive, effects tend to provide the most likely explanation for sufficiently severe disease. The
level of severity (fitness loss) required for this is sufficiently small that causal alleles may even
rise to relatively high frequencies (e.g.>1%).

As we found when exploring the dynamics of populations as a whole, the degree of pheno-
typic noise and the interaction parameter, k, have important effects on the degree to which
epistasis and disease correlate. Interestingly, when k is small, it has a greater effect on the preva-
lence and magnitude of epistasis within a population (S6 Fig) than it does on localizing the
population to the corner (S4 Fig). This effect arises because the local shape of the small portion
of the landscape’s corner actually occupied by the population, which depends sensitively on k,
matters more for the epistasis realized in individuals of the population than for the population
dynamics as a whole. Put another way, moderate nonlinearities are sufficient to localize the
population to the most nonlinear part of the landscape, but large nonlinearities are needed to
generate strong epistasis in severely affected cases.
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Accounting for the Most Severe Common Diseases
We have seen how strong epistasis can arise in severely affected cases (those with low fitness), but
how does the disease severity that arises in our simulations compare to that measured in com-
mon, heritable diseases? Averaging fitness (and epistasis) over all cases at each sampled time
point reveals that diseased individuals in our simulations are most likely to have an average fitness
of at least 0.8, relative to that of healthy controls (Fig 6H). For many clinically significant disor-
ders, fitness is very likely in this range (e.g. bipolar disorder in females), but some common dis-
eases of particular interest to human geneticists affect fitness much more severely, e.g. the average
relative fitness of individuals with schizophrenia is 0.23 for men and 0.47 for women [27].

One candidate explanation for such severe, yet common, disease is rooted in the hypothesis
that rare gene variants cause complex disease [28–30]. According to this hypothesis, there is a
large, heterogeneous class of susceptibility variants at genes associated with disease, effectively
elevating the overall mutation rate (e.g. above what we typically use in simulations), thus
increasing the proportion of unfit individuals at mutation-selection balance. While S8 Fig con-
firms the predicted effect of increased mutation rate on the proportion of unfit individuals, it is
accompanied by a sudden and drastic reduction of epistasis, presumably associated with a
destabilization of the corner (cf. Fig 2D, which exhibits a similar corner destabilization when
mutation step size is increased). Explaining the most severe common diseases by invoking a
high effective mutation rate, it would seem, largely rules out epistasis as an important factor in
the molecular underpinnings of those diseases. Accordingly, it is worth considering whether
there are any other ways to explain the occurrence of such diseases at high prevalence in a pop-
ulation, that do not make the existence of strong epistasis unlikely.

One possibility relates to the potentially highly polygenic nature of some disease pheno-
types, i.e. the degree to which genetic variants at a large number of different genes are collec-
tively involved in causing disease. So far we have considered only an LP landscape defined by
just two genes, in which only pair-wise epistasis can evolve. Yet, there is by now considerable
evidence in favor of the existence of higher-order epistasis both in experimental systems
[11,31–33] and humans [34]. Because the average fitness disadvantage associated with any
individual allele would be expected to go down as the number of alleles with which it must
interact goes up, one might expect that deleterious, high-order epistatic interactions would be
less likely to be eliminated by natural selection than low-order ones, with the result that more
severe epistatic disease could persist.

To test this idea, we evolved populations on an LP landscape defined by an arbitrary num-
ber of input values, each of which was determined by a different genetic locus. S9 and S10 Figs
show that increasing the number of inputs (and genes) beyond the two considered thus far
does not significantly alter relative case fitness.

Not only do evolutionary simulations subject to a larger number of causative genes show no
increase in disease severity, they also demonstrate that synergistic epistasis between three or
more genes doesn’t arise spontaneously, despite the fact that the phenotypic landscapes being
considered allow for epistasis among as many as six genes at a time. This surprising result is
most apparent as we vary levels of total phenotypic noise, as in S9 Fig. These data show that,
while it is possible to identify conditions in which case-control phenotype differences are almost
entirely due to epistasis, i.e.<Hind-hind>> 0.8, and it is possible to localize the population to
the corner with respect to all input values, it is not possible to achieve both simultaneously.
Instead, the intermediate levels of phenotypic noise that favor epistasis (S9A Fig; see also Fig 6E)
are insufficient to corner-localize the population with respect to more than 2–3 genes at a time
(S9B Fig). In summary, at mutation-selection balance, increasing the number of inputs (i.e. the
number of potential interacting genes) contributing to the LP model does not increase the
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contribution of epistasis to explaining disease phenotypes. However, if there were other forces
keeping the population localized to a higher-dimensional corner even at modest noise levels,
increasing the number of interacting genes could lead to an increase in disease epistasis.

We next turned to considering out-of-equilibrium scenarios. It has been suggested that
severe disease often originate from a recent environmental shift, to which modern populations
are still adapting [35]. Since our simulations already model environmental fluctuations as coor-
dinated changes to input values, one way to simulate an abrupt environmental shift is to com-
pute case relative fitness immediately following a large perturbation to the input values. S11 Fig
shows the distribution of average case fitness (and epistasis) under such a scenario for a variety
of shift magnitudes. As expected, these perturbations tend to reduce case fitness, but the effect
saturates at large shift magnitudes because both cases and controls suffer fitness reductions.
We reasoned that this saturation of disease severity would be circumvented if, instead of input
value, we shifted selection strength, s, upward. The consequent narrowing of the ridge in the
fitness landscape should leave optimal-fitness controls unscathed while dramatically reducing
case fitness. As expected, a 5-fold increase in selection strength transiently increases disease
severity (compare Fig 6I with 6H), attaining values comparable to those seen in schizophrenia
at larger-fold selection shifts (S12 Fig). Importantly, performing the environmental shift at the
level of fitness, instead of phenotype, implies that our prior conclusion—that epistasis is
enriched in the most severely affected cases—remains intact (Fig 6I).

Beyond LP Models
The LP model was introduced as a mathematical representation of biochemical scenarios in
which the quantity of interest is the concentration of a complex consisting of two (or more)
gene products [23]. It is, however, mathematically equivalent to any scenario in which the
lesser of two (or more) quantities determines function, as may easily occur when cellular com-
ponents, networks, or even cells have to work together. Moreover, fitness landscapes similar to
those produced by the LP model result from a variety of more general cases of gene interaction,
particularly when there are tradeoffs between what genes accomplish collectively versus sepa-
rately. For example, if we have two interacting gene products, X and Y, with fitness being
increased by the amount of the product of [X] and [Y], but then also decreased separately by
[X] and [Y] (for example, if there is some energetic cost associated with expressing both X and
Y), then we easily produce landscapes such as that in Fig 7A (Z = XY/(X+Y)), which greatly
resembles those in Fig 3A and 3B. Yet another way to produce a similar landscape is to have
two interacting processes each of which is the outcome of a process that is a saturable function
of a single gene (i.e. Z = (X/(1+X))�(Y/(1+Y)).

Such landscapes form continuous ridges in fitness-space because they represent scenarios in
which fitness tradeoffs create a continuum of options for achieving a single objective. Because
tradeoffs are thought to be such an important force in biological evolution, we think it particu-
larly relevant to understand how populations evolve on ridge-landscapes. To approach this
problem in the most general way, we began by finding criteria that could describe the local
shapes of all possible ridge-landscapes in three dimensions (i.e. when fitness is a function of two
genes, X and Y). We identified three such criteria, which we refer to as orientation, curvature,
and fall-off. The first two are characteristics of the X-Y curves of constant fitness value, i.e. the
fitness contours, with orientation meaning the slope (in the X-Y plane), and curvature being the
inverse of the radius of curvature. Fall-off refers to how fitness changes as one moves orthogonal
to a fitness contour (i.e. the spacing between contours). It may be characterized by the degree to
which it is or is not locally uniform (spacing between contours relatively constant) or locally
symmetric (fitness declining equally on both sides of the optimal fitness contour).
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We began by investigating arbitrary landscapes in which fall-off is symmetric and relatively
uniform along the entire optimal fitness contour (the LP model falls into this category), and
later explored the effects of varying fall-off. Populations were initiated at various locations, and
evolution simulated in the same way as was done for the LP model (see Methods). Parameters

Fig 7. Evolutionary trajectories and epistasis on fitness ridges. (A) A variety of biologically realistic scenarios produce landscapes with continuous
fitness ridges that resemble those in the LP model. Here we show a landscape for Z = XY/(X+Y), which models a scenario in which two gene products work
together, but with a cost associated with expressing each. Compare with Fig 3A and 3B. (B) Evolution on an arbitrary fitness ridge-landscape, in which the
optimal phenotype (w = 1) is defined by a parametric curve that traces a closed loop in the X-Y plane: ln(X) = sin(2t) cos(2t)– 2 cos(t), ln(Y) = (cosh(t) + 5 sin
(t))/4, -π < t < π, and for points elsewhere in the plane, fitness falls off as a function of the shortest distance to the parametric curve. Black crosses indicate
initial positions of populations chosen for 22 independent simulations. A combination of developmental and environmental noise was used (σdev = σenv =
0.05, as in Fig 6C). Blue circles show, for each simulation run, the population mean values of ln(X) and ln(Y) at 11 timepoints, sampled once every 500,000
generations between 5,000,000 and 10,000,000 generations. The results show that corners in the fitness ridge function are attractors: populations that start
at a corner tend to stay there, while those starting near enough to a corner are drawn there. At three locations along the curve, there are two corners in close
proximity: (ln(X), ln(Y))� (-1.5, 1.25), (0, -0.75), and (1.5, 2). Nearby populations are always drawnmore strongly to the sharper of the two corners. (C)
Maximum epistasis in the vicinity of a high-fitness ridge. This figure shows only the region of the fitness landscape from Fig 7B wherew > 0.95. Locations of
blue circles are identical to Fig 7B, representing sampled population locations at late time points. The red shading indicates the maximum possible epistasis
at any given point, derived from Eq. (S85) in S1 Text. Epistasis is maximized in the vicinity of corners in the fitness ridge, and minimized where the X-Y slope
(orientation) of the ridge is close to vertical or horizontal. (D) Conceptual explanation for the attractiveness of corners. Because noise forces populations to
sample from nearby regions of the fitness landscape, its effect may be viewed as a form of local averaging. As sufficiently thin fitness ridges may be
conceptualized as segments of curves in the X-Y plane (black), the average value of fitness within any region (blue) may be equated with the arc-length of the
optimal fitness contour that is contained within it. For simple regions, the greater the curvature of the contour, the more arc length can usually be contained
within it. (E, F) Influence of ridge orientation on epistasis. In D, an LP-like fitness landscape (s = 1; zopt = 1, as in Fig 6C) was rotated by 45°, so that its arms
become diagonal, while the orientation of the corner (slope of the optimal fitness contour at the corner) becomes vertical (the angle of rotation is indicated by
the arrows). A snapshot of an evolutionary simulation (σdev = σenv = 0.05) is shown; blue and gray dots representing “case” and “non-case” individuals,
respectively. As expected, the population localizes near the corner, but the individuals with the highest phenotype values (cases) are outliers only in X
relative to the rest of the population. Panel E summarizes a variety of simulation runs in which the same fitness landscape was gradually rotated from its
original orientation (0°) to 45°. The black curve gives the fraction of case-control phenotype differences attributable to epistasis (for cases with relative
fitness < 0.9; i.e. the same quantity plotted in Fig 6E and 6G). The red and blue dashed lines indicate the mean fraction of the phenotypic variance of the
population that is attributable to variance in X and Y, respectively. Note that epistatic explanation for disease vanishes as the corner orientation moves from
diagonal to vertical. At the same time, phenotypic variance goes from being bi-genic to effectively monogenic. (G) Effect of variable fitness fall-off. In this
simulation, the fitness landscape in B was distorted by spreading apart the fitness contours in a relatively straight part of the landscape lying between two
corners. The meanings of black and blue symbols are as in panel B. The results show that locally flattening the fitness landscape destabilizes the corner at
(-1.5, 1.25). However, the sharper corner near (1.5, 2) continues to be a strong attractor. The evolutionary simulations presented in this figure are described in
greater detail in Methods. (H) Maximum epistasis in the vicinity of a high-fitness ridge. The figure presents a map of maximum possible epistasis as a function
of location along the high fitness ridge in panel G, using the same approach as in panel C. Here we see that the locations to which populations are drawn by
“survival of the flattest”may display little or no potential for epistasis.

doi:10.1371/journal.pgen.1006003.g007
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that were varied included the strength of developmental and environmental noise, the strength
of selection, and the mutational step size.

Fig 7B shows the results on one such landscape, in which the fitness contours are displayed.
Black crosses show the X-Y values at which populations were initiated, while blue circles show
population mean locations 5,000,000 generations later, and for a series of 500,000-generation
time points thereafter. From a large number of analyses such as these we noticed two consistent
trends.

First, in the presence of noise, evolutionary stability is closely related to the curvature of the
optimal fitness contour, with populations typically being drawn to locations of highest curva-
ture. These locations correlate strongly with locations at which the potential for epistasis is
greatest (Fig 7C). This is the same behavior we observed in the LP model, in which noise drives
populations to the corner, and, generally speaking, the sharper the corner (which corresponds
to lower values of the parameter k in the LP model), the stronger the effect. We may rationalize
this behavior by the fact that phenotypic noise enforces a form of spatial averaging over a
region of the fitness landscape (as described above and in S1 Text, section 3). On an arbitrary
fitness ridge of uniform width, “effective fitness” will depend on the area under the ridge that is
contained within a given averaging radius, which will naturally be a function of the ridge’s cur-
vature. In general, the greater the curvature, the more arc-length of the optimal fitness contour
will be contained within the averaged area (Fig 7D). Thus, the notion that evolution drives pop-
ulations to curves—i.e. “survival of the curviest”—can be expected to apply broadly, not just to
LP models or landscapes that resemble them.

Second, we also found that, as in the LP model, the emergence of epistasis as a major factor
in determining the phenotypes of low-fitness individuals correlated with the arrival of popula-
tions at regions of high curvature. But, this correlation was no longer perfect. At some corners,
even sharp ones, little epistasis was observed. A deciding factor, we realized, was the orientation
(slope) of the optimal fitness contour (at the point of highest curvature). When populations
were at locations where orientation was approximately diagonal (as it always is at the corner of
LP landscapes), a large proportion of the phenotype of the most unfit individuals could be
explained by epistasis. When orientation was close to horizontal or vertical, almost none was.
We can rationalize this behavior by noticing that the slope of the optimum fitness contour is a
measure of the relative contributions of changes in X and Y to phenotype. When that slope par-
allels one of the two axes, phenotype is necessarily insensitive to small changes along that axis.
Epistasis between X and Y becomes negligible because phenotypic variation correlates signifi-
cantly with genetic variation at only one of the two loci. We can illustrate this graphically (Fig
7E and 7F) by rotating the LP landscape about the origin to various extents, evolving popula-
tions on them, and observing that, as the fraction of the phenotypic variance explained, indi-
vidually, by X and Y goes up toward one, the fraction of the case-control phenotype differences
attributable to epistasis, for cases with relative fitness less than 0.9 (the same quantity plotted in
Fig 6E and 6G), goes down toward zero. As described in S1 Text, we can more generally analyze
the effects of orientation and curvature on epistasis by deriving general expressions for orienta-
tion, curvature, and maximum possible epistasis in terms of the partial derivatives of the phe-
notype with respect to X and Y. Such analysis reveals the generality of the relationship between
orientation and potential for epistasis, and specifies the exact conditions under which curvature
and epistasis will correlate with one another.

After verifying these findings over a variety of arbitrary ridge shapes, we considered the
effects of varying fall-off. As shown in Fig 7G, by appropriately adjusting the spacing between
fitness contour lines, it is possible to find scenarios in which evolution in the presence of noise
drives populations away from regions of highest curvature, and toward regions of low potential
for epistasis (Fig 7H). Such simulations reveal that evolutionary dynamics in the presence of
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noise reflects two “forces” that can be at odds with each other: survival of the curviest, as
described above, and “survival of the flattest”. The latter has been described previously, as a
means of explaining how evolution selects for robust, or canalized, outcomes [36]. Like survival
of the curviest, survival of the flattest arises from the fact that, in the presence of noise, “effec-
tive fitness” reflects a local averaging of the fitness landscape. A population may increase that
average fitness either by moving to a landscape location that is curvier (Fig 7D) or flatter (Fig
7G), depending upon which feature exerts the stronger attraction, but only in the former case
may such movement be expected to produce a strong increase in epistasis. Thus, even though
the conclusions drawn here from the analysis of LP landscapes may apply to a broad range of
biological scenarios, we should not expect them to apply to all (see Discussion).

Discussion
Human populations are ill-suited for the direct, empirical discovery of epistasis [6], which is
why theory and simulation currently play a major role in the debate about whether epistasis is
an important factor in the genetic etiology of human variation, e.g. [37,38]. Here we used a
combination of mathematical analysis and evolutionary simulation to investigate the condi-
tions under which the evolutionary forces of drift and natural selection tend to cause relatively
common, deleterious traits (“common disease”) to be due substantially to epistasis. A central
aspect of our analysis was the inclusion of phenotypic “noise”, i.e. randomness in the geno-
type-phenotype map either at the level of individuals (developmental noise) or at the level of
the map itself (environmental noise).

It has long been appreciated that noise can favor the evolution of canalization [39,40],
although the relationship between, and relative importance of, different kinds of noise continue
to be debated [41–43]. Moreover, noise-driven canalization has previously been observed to
correlate with an increase in epistasis. For example, when evolving digital organisms in silico,
Wilke and Adami noted that at sufficiently high mutation rates—effectively a form of long-
term phenotypic noise—populations tended to be drawn to flatter regions of the phenotypic
landscape (“survival of the flattest”), even if such regions were suboptimally fit, and this was
accompanied by an increase in the prevalence of synergistic epistasis [44]. Qualitatively similar
findings of mutational robustness emerging together with epistasis have come from simulated
evolution of gene regulatory networks in the presence of recombination [15], and have been
confirmed in experimental studies of the function of single enzymes in bacteria [45].

Because noise in the genotype-phenotype relationship may be viewed as a form of local
averaging of the fitness landscape (see S1 Text), it is not surprising that several different kinds
of noise—including developmental and environmental variability of the kind we consider here
—have all been observed to drive evolving populations to flatter locations [46–48], where
robustness to variation of any sort (genetic or environmental) will be buffered [47,49]. What
has been unclear is whether such movement is necessarily accompanied by an increase in epis-
tasis, and if it is, whether an identifiable relationship exists between the parameters of noise,
the phenotypic landscape, and distribution of epistatic effects that arise among individuals.

In part to address these questions, we studied a class of simple landscapes defined by the
generalized LP model, which may be viewed as an abstraction of several biologically relevant,
mathematically related, gene-gene interaction scenarios. Rather than consider only average epi-
static effects, we focused on the necessary conditions for especially unfit (“disease”) phenotypes
to be explained by epistasis. These conditions included intermediate levels of phenotypic noise
(Fig 6E), selection strength (Fig 6G), and mutation rate (S8 Fig), as well as a sufficiently nonlin-
ear genotype-phenotype mapping (i.e. small k; S4 Fig). The extent to which selection drove
populations to highly epistatic regions of the phenotypic landscape depended on the
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magnitude of the non-linearity (e.g., parameter k in S4 Fig), as well as the scale over which the
population was spread—which depended on both the strength of selection, s, and phenotypic
noise level, σ (through the product sσ2; Fig 6G).

When these conditions were met, synergistic interactions among both rare and common
alleles (S5 Fig) tended to be a major cause of disease, particularly in the most severely affected
individuals (Fig 6C), regardless of the number of genes underlying the trait in question (S10
Fig). That the most severely affected individuals are expected to be the most “epistatic” can be
understood by noting that such individuals are farthest away, on the phenotypic landscape,
from the norm, and therefore most influenced by the landscape’s nonlinearity. In agreement
with this prediction, we note that, in recent yeast work that has identified substantial amounts
of epistasis among standing genetic variants, analysis had been focused specifically on the most
extreme phenotypes [11]. Although the individuals that possess such phenotypes may be rare,
they can be better positioned to provide mechanistic insights into the phenotypic landscape on
which an entire population resides.

When we subsequently extended our analysis to other kinds of two-gene fitness surfaces, all
of which, like the LP model, had optimal-fitness ridges, we again observed evolving populations
drawn by noise to the most sharply curved parts of ridges, a phenomenon we term “survival of
the curviest”. Arrival at highly curved regions tended to correlate with an increase in robust-
ness, as well as reduced phenotypic variance despite increased accumulation of genetic varia-
tion. Furthermore, as in the LP model, arrival at such locations also tended to correlate with an
increase in observed epistasis. This was not always the case, however, as this pattern was vio-
lated in two types of situations:

First, when ridge corners (vertices) were oriented close to horizontal or vertical, populations
were still drawn to them, but strong epistasis was not observed, as phenotypic variance essen-
tially became a function of only one of the two genes (Fig 7E and 7F). In practical terms, locali-
zation of a population to this type of landscape feature ought to make the discovery of causal
gene variants by traditional statistical means (e.g. GWAS) much easier, because it both reduces
the number of genes at which variation has any effect, and eliminates all but “main effects”.
Accordingly, to the extent that one cares primarily about heritable diseases that GWAS has
failed to adequately explain, one should be biased against encountering this type of landscape
feature.

Second, when we varied the way fitness declined along ridges, we found that “survival of the
curviest” could sometimes be thwarted by”survival of the flattest”, with populations being
drawn to locations at which two genes still contribute to phenotypic variance, but little epistasis
occurs (Fig 7G and 7H). Such simulations show that the connection that has previously been
noticed between selection for robustness and epistasis (e.g. [15,44]) is not, in fact, a necessary
one (see also S1 Text, section 6, for an analytical treatment), and that our ability to generalize
conclusions drawn from the study of LP landscapes to other biological settings depends upon
whether landscapes in which flatness outweighs curviness are found frequently or rarely in
biology. We note, in this regard, that the landscapes explored in Fig 7 were arbitrary curves,
not meant to be representative of any specific biological processes. How easily networks of
actual biological components achieve such topographies remains to be investigated.

It should be noted that none of the conclusions of the present study are necessarily in con-
flict with earlier work on the evolution of epistasis [15–18], including studies that have sug-
gested that epistasis is unlikely to play a significant role in complex human traits in general, e.g.
[14]. The reason is that we have focused here not on traits in general, but on a very particular
subset, namely those that are substantially deleterious (e.g. fitness<0.9) and moderately (but
not very) common (population frequency between 0.1 and 10%). We justify this focus by the
fact that such criteria would appear to capture a great deal of clinically relevant human disease.
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There are two reasons why this focus is so important. First, the situations in which both cri-
teria (substantially deleterious and moderately common) are met are evolutionarily rare events
(because natural selection disfavors the appearance of common disease). Accordingly, argu-
ments based on the typical evolutionary behaviors of traits do not necessarily apply. In effect,
we are not asking here about the probability of observing epistasis in general, but on its proba-
bility given prior knowledge of common disease.

Second, by restricting our view to disease frequencies of 10% or lower, our analysis operates
in a regime in which functional epistasis has the potential to exist without much statistical epis-
tasis (Fig 1). This means that the effects of epistasis on the evolutionary process itself can be
very small (deflating the argument that epistasis per se is deleterious, and thus should be
selected against, e.g. [37]). It also means that the impact of epistasis on patterns of heritability
can be very small (which could likewise eliminate most arguments against the existence of epis-
tasis based on the analysis of data, e.g. GWAS). The condition under which functional epistasis
can be large, while statistical epistasis is negligible, is when populations are distributed on a
phenotypic landscape that is relatively linear where the majority, “control” individuals are
found, becoming non-linear where the minority, “cases” reside (see Fig 1). On the simple LP
landscape, such a scenario occurs when populations are centered near the “corner”, i.e. when
inputs from different loci are reasonably balanced. As we show here, the force that drives popu-
lations to that location is noise.

In the realm of human genetics, the use of unbiased genetic association studies to uncover
explanations for complex human disease has often proved exceptionally challenging, leaving
clinicians and researchers to decide how best to allocate further efforts. Prominent competing
hypotheses have attributed undiscovered heritable variation variously to epistatic interactions
among genes; to large numbers of variants of very small effect; or to variants currently excluded
from the association studies. The latter include both rare variants and structural alterations
other than SNPs, such as tandem-repeat polymorphisms [50], copy-number variants [51], and
large translocations [52]. While such structural variants have been associated with individual
diseases (e.g., [53]), they have yet to account for a great deal of the “missing” heritability of
common diseases.

Here, by examining the conditions that favor the evolution of disease epistasis, we hoped to
illuminate circumstances under which epistatic explanations are most likely. We believe that
those circumstances, while not universal, are likely common enough to warrant additional
effort toward discovering epistatic interactions. In this regard, we can imagine at least three
specific ways in which the present study might be useful. First, it may help investigators use
information about the social, cultural or historical aspects of a particular disease state to
develop intuitions about the probability of an epistatic explanation. For example, expected
interactions between mental illness and culture, or metabolic illness and diet, suggest that dis-
eases in these categories are more likely to be evolving in the face of recently fluctuating envi-
ronments than, say, congenital heart defects. Second, it could encourage investigators to
directly measure developmental noise genome-wide, e.g., as reflected in variations in RNA-seq
levels in tissues from individuals with the same SNP genotype [54], with the goal of identifying
cases in which the observed noise is of the right magnitude to favor the emergence of epistatic,
disease-causing interactions. Third, our simulations of the LP model suggest that risk alleles
that combine to produce exceedingly unfit individuals (fitness< 0.75) ought to have frequen-
cies that lie in the 0.2–0.5% range, at the low end of what is typically considered in GWAS stud-
ies, but higher than expected for rare alleles with Mendelian effects. Potentially, GWAS that
focused exclusively in this allele frequency range might actually have greater power to detect
epistasis than GWAS that considers all variants.
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Methods
Numerical calculations of linear regression were implemented in python and visualized in
Matlab. Evolutionary simulations were implemented in C, as described below.

We simulated populations of N = 5000 diploid individuals forward in time using non-over-
lapping generations. An individual’s genotype consisted of two allele values at each locus. Each
input value (e.g., x or y) was determined by a single locus, and was taken as the sum of the indi-
vidual’s two allele values at that locus. We restricted allele values to be less than 100 (i.e. each
input value was constrained to be less than 200). Every generation, then, each individual’s allele
values were summed to determine its nominal input values. These values were adjusted first by
environmental noise, which exerts the same effect on each individual in the population. The
resulting values were then adjusted by developmental noise, applied independently to each
individual.

The following Metropolis-Hastings algorithm was used to model persistence of environ-
mental noise from one generation to the next, i.e. the temporal autocorrelation of the noise.
Given that the environmental perturbation term in generation i was Δxi, the perturbation in
the next generation, Δxi+1, was determined as follows. A proposed value of the perturbation,
Δxprop, was generated by adding a Gaussian-distributed random variate with mean zero and
variance σstep

2 to Δxi. If Pr(Δxprop) = exp[-Δxprop
2/(2σenv

2)] was greater than Pr(Δxi) = exp
[-Δxi

2/(2σenv
2)], then the proposed perturbation was accepted and Δxi+1 was assigned the value

Δxprop. Otherwise, the proposed perturbation was accepted with probability proportional to the
ratio Pr(Δxprop)/Pr(Δxi). If the proposed perturbation was rejected, then the environmental
perturbation remained unchanged (Δxi+1 was assigned the value Δxi). This algorithm ensures
that the steady-state probability that the environmental perturbation has a particular value, Δx,
is proportional to exp[-Δx2/(2 σenv

2)]. For given values of σstep and σenv, the autocorrelation
time was determined a posteriori from the autocorrelation function of Δxi. For most of the
results presented here, σstep/σenv = 0.25, generating an autocorrelation time of� 27 generations.

Having applied the phenotypic noise to the nominal input values, the resulting set of effec-
tive input values (xe, ye) was used to calculate the individual’s phenotype, z, and fitness, w. Sim-
ulations with d> 2 genes were performed in an analogous way, with the effective set of input
values (x1e, x2e,. . . xde) determined by the application of environmental and developmental
noise to each of the d nominal input values (x1, x2,. . . xd).

The next generation was then constructed by a method of sampling with replacement,
where the probability of an individual being sampled to become a parent was proportional to
its fitness. For each new offspring, two parents were identified using the following sampling-
rejection scheme. First, a prospective parent was drawn at random from the entire population.
Then, a uniform random number was drawn between zero and the highest fitness in the popu-
lation. If the prospective parent’s fitness was higher than the random number, the parent was
accepted. If not, they were rejected and a new random prospective parent was drawn. Sampling
with replacement implies that a rejected parent could be redrawn and accepted later, and a par-
ent could be drawn more than once; the only exception was that the same candidate could not
be drawn for both parents of the same individual.

The offspring genotype was constructed by randomly selecting one of the two alleles at the
first locus from each parent. A recombination parameter determined the probability of switch-
ing chromosomes between loci. In most simulation results presented in the text, we assumed
free recombination, so that the two alleles at each locus were sampled with equal probability
and with no correlation among loci.

Finally, a mutation was applied independently to each allele with probability μ = 10−4 per
allele per generation. In the event of a mutation, a normally distributed quantity (mean zero,
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variance σμ
2) was added to the natural logarithm of the allele’s value (thereby ensuring that

each allele value remains positive). If the mutation led to an allele value in excess of 100, the
mutation was rejected, and the inherited allele retained its original value.

Each simulation was run for 10 million generations, and the first 1 million generations dis-
carded. Populations were typically analyzed at intervals of 10,000 generations.

At the start of each simulation on the generalized LP landscape, each individual was homo-
zygous, with allele values chosen so that x = y and z = 1, i.e. all individuals were positioned at
the corner of the ridge in the phenotypic-noise-free fitness landscape. For example, when k = 0,
the initial value associated with each allele was 0.5, so that x = y = 1.

For evolutionary simulations on arbitrary, non-LP landscapes (Fig 7), a lookup table of phe-
notype values was pre-computed based on a grid of combinations of log-transformed underly-
ing gene values (ln(x) and ln(y)). During the course of simulation, individual phenotype values
were calculated by linear interpolation from the four closest ln(x), ln(y) combinations from the
lookup table. Fitness values were then calculated according to (Eq 2) in the main text.

For Fig 7B and 7C, the phenotype lookup table was constructed as follows. An array of
pairs, (ln(x), ln(y)) was constructed consisting of 2100 values of ln(x) from -3.5 to 3.5 by 1800
values of ln(y) from -2 to 4. For each pair, the logarithm of the phenotype value z was taken to
be a multiple of the distance d to the closest point on the parametric curve corresponding to
the optimal phenotype, zopt = 1. For points outside the closed curve, ln(z) = –d, so that z< zopt;
for points inside the closed curve, ln(z) = d so that z> zopt.

For Fig 7G and 7H, the phenotype lookup table was constructed as above, but with the fol-
lowing modification. When calculating the distance d, we introduce a scaling factor f that
depends on the curve parameter t (defined by the point on the curve nearest to (ln(x), ln(y))).
For t<π/3 or t>2π/3, f is set to 1. But for π/3< t< 2π/3, f is set to (3 –cos(6t))/2. This reduces
the calculated distances in the vicinity of t = π/2, meaning that phenotype and fitness values
change less rapidly in response to changes in x and y.

Supporting Information
S1 Fig. Measures of epistasis. (A, B) Low statistical epistasis can exist in the presence of high
functional epistasis. Statistical epistasis was computed using either all of the genotypes in a
population (red), or a biased version of that distribution in which the prevalence of individu-
als with large phenotype values was deliberately increased (green). In this example, the preva-
lence of individuals displaying the top 1% of phenotypes was increased to 50%, as would
typify a balanced case-control study of a common disease. Eq (S34) defines the mathematical
relationship between the distributions of genotypes in the original and adjusted populations.
Panels A and B differ in the functional form of the phenotypic landscape, corresponding to

different values of the parameter n in the definition, Zðx; yÞ ¼ x þ y þ ðxyÞn
x2n�1; the lines in each

panel were generated by varying the parameter ξ, which controls the allele values at which
the landscape crosses over from relatively linear to highly nonlinear. The population distribu-
tion was defined by pðx; yÞ ¼ 1

l2
e�ðxþyÞ=l with λ = 0.2. Functional epistasis was averaged over

all case individuals. The results show that enriching for case genotypes, which have the great-
est levels of functional epistasis, does not necessarily increase statistical epistasis, and often
reduces it. (C) Though functional epistasis of cases is not sufficient to generate high levels of
statistical epistasis (panels A and B), the latter can result from moderate levels of functional
epistasis in the bulk of the population, as measured by evaluating functional epistasis at one
standard deviation of the (original) genotype distribution, 1 –hind�(λ,λ | 0,0). The data also
show that statistical epistasis depends on the spread of the population, λ, and the shape of the
phenotype landscape, ξ, only through the lumped parameter, 1 –hind�(λ,λ | 0,0) (derived in
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Section 1.2 in SI text). Line is defined by Eqs (S27)–(S29); circles are numerical estimates for
a set of (ξ, λ) values. n = 2.
(PDF)

S2 Fig. Distribution of nominal and effective input values under developmental and envi-
ronmental noise and under case-control sampling. (A-D) Distribution of input values
among all individuals (green) in a simulated population and conditioned upon individuals
being cases (pink) or controls (dark blue). Controls are drawn from the middle 50% of rank-
ordered phenotype value (ranging from the 25th to the 75th percentile); cases represent the top
1% of this rank-ordered distribution. Since developmental noise is uncorrelated among indi-
viduals, the nominal input values of cases and controls are poorly differentiated (A), implying
little heritability. Environmental noise, on the other hand, is correlated across individuals,
resulting in a correlation between nominal input values and case-control status (C), and high
heritability. (E-H) Time courses. Blue lines connect points corresponding to the average values
of x and y in the population at intervals of 500,000 generations. Red bars indicate the magni-
tude of the variation in the population at each sampled timepoint (+/-2 standard deviations).
(I-L) Median locations of case (pink) and control (dark blue) samples for the same temporal
sequence of samples shown in panels E through H. Black lines connect control and case medi-
ans from the same time point. Parameter values are zopt = s = 1, N = 5000, k = 0.01, and σμ =
σdev = σenv = 0.1
(PDF)

S3 Fig. Random walk on the LP landscape. (A) Evolutionary path of the population center of
mass as a function of input values. Selection is governed by the LP fitness landscape, with hot-
ter colors (white, yellow) and colder colors (red, black) representing high and low fitness val-
ues, respectively. When interaction strength is weak (k>>1), as shown here, the corner is
evolutionarily unstable. (B) When the interaction strength is strong (k<<1), the population
follows an unbiased random walk along the arms, except in close proximity to the corner,
where it tends to localize. (C) The random walk of the population center of mass along the hor-
izontal arm is biased towards the corner by the graded effective fitness profile, we(x), where x
represents the natural logarithm of the input value. (D) g(x|x0) is the probability density that a
mutation changes (the natural log of) the value of the gene to x, given that (the natural log of)
the input value prior to the mutation was x0. (E) The probability, ρ(x|x0), that a mutant allele
with value x fixes in a population of alleles of value x0 (again in log space), corresponding to the
effective fitness profile shown in (C). In C–E, the horizontal axis represents the natural loga-
rithms of the corresponding input values. N is population size.
(PDF)

S4 Fig. Phenotypic noise stabilizes the corner at smaller k. Fraction of simulations in which
the population-mean ratio of the two input values lay within the indicated bounds (1.2 for A
and B, 1.4 for C and D, and 3.0 for E and F). Parameter values were zopt = s = 1 and N = 5000.
At moderate noise levels (A, C, and E), environmental and developmental noise behave simi-
larly in terms of localizing the population at the corner. At higher noise levels (B, D, and F),
developmental noise localizes the population to the corner more effectively than does environ-
mental noise.
(PDF)

S5 Fig. Population frequencies of alleles causing disease. Each case individual is represented
as a single point whose color indicates the population frequency of the rarest allele carried by
that individual. (Recall that the phenotype value z depends on the values of an individual’s two
alleles at each of two loci.) Results are pooled over the five timepoints in one simulation run
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with the lowest mean fitness of cases relative to controls. Parameter values are σenv = σdev =
0.05, s = 1, and k = 0.
(PDF)

S6 Fig. How epistasis depends on the interaction constant, k.Heat maps with intensity rep-
resenting the epistatic fraction, Hind—hind, averaged over all cases with relative fitness< 0.9
and all sampled time points for k = 0 (A) and k = 0.01 (B). The combinations of environmental
and developmental noise levels that lead to significant epistasis are similar in the two cases, but
stronger interaction (i.e. lower value of k) results in a greater fraction of the case-control phe-
notype difference being attributable to epistasis.
(PDF)

S7 Fig. Low relative fitness predicts epistasis among cases. Summary of the data in Fig 6C.
Circles indicate the median value of epistasis fraction, Hind—hind, for case individuals with sim-
ilar fitness values, and error bars indicate the corresponding 25th and 75th percentile values.
(PDF)

S8 Fig. How mutation rate, μ, affects epistasis and case fitness.Mutation rates (per allele per
generation) for each row are indicated on the right-hand side. The left-hand panels show the
joint distribution of the epistatic fraction, Hind—hind, and fitness (relative to mean control fit-
ness) over all cases and all sampled time points. In the right-hand panels, each dot represents a
single time point at which the epistatic fraction and relative fitness were averaged over all cases.
Parameter values are σdev = σenv = 0.05 and σμ = 1.0.
(PDF)

S9 Fig. Effect of dimensionality (number of inputs) on disease epistasis and corner localiza-
tion. (A) Epistatic fraction Hind−hind averaged over all cases with a relative fitness of less than

0.9 and over all time points, as a function of the total phenotypic noise level s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
dev þ s2

env

p
,

illustrating the biphasic dependence of epistasis on noise level evident in Fig 6E and 6G. Epista-
sis decreases more with increasing developmental, versus environmental, noise (compare sec-
ond and third rows). Increasing the dimensionality of the system has only a modest effect on
the epistatic fraction, with the largest effect occurring when σenv > σdev. (B) The number of
inputs that are localized to the corner, defined as the number of time- and population-averaged
input values that are within one mutational step (σμ) of the corner, as a function of phenotypic

noise level, s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
dev þ s2

env

p
. Greater values of phenotypic noise are required to localize larger

numbers of dimensions to the corner. As seen in Fig 5, increasing developmental noise mono-
tonically enhances corner localization (second row) while intermediate levels of environmental
noise correspond to maximum corner localization (third row). In both columns, rows differ in
the relative contributions of σdev and σenv to σ.
(PDF)

S10 Fig. Effect of dimensionality (number of inputs) on epistasis and case fitness. Each row
corresponds to a different number of inputs in the LP model (indicated on the right-hand
side). Each input value is determined by its own locus, and all loci are unlinked. The first and
third columns show the joint distribution of the epistatic fraction, Hind—hind, and fitness (rela-
tive to mean control fitness) for all cases and all sampled time points. In the second and fourth
columns, each dot represents a single time point, at which the mean values of the epistatic frac-
tion Hind−hind and case relative fitness were calculated. The first and second column (σdev =
σenv = 0.05) correspond to the condition under which we observed the strongest epistasis
among cases with relative fitness< 0.9 (the peak in the first row of S9A Fig). The third and
fourth column (σdev = 0.05; σenv = 0.15) correspond to the condition under which
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dimensionality appeared to have the greatest influence on the epistatic fraction for cases with
relative fitness< 0.9 (σ = 0.158 in third row of S9A Fig).
(PDF)

S11 Fig. Effect of sudden environmental shift on case epistasis and fitness. Simulations were
run as described, but in this case an additional environmental shift was temporarily performed
immediately prior to sampling case and control individuals at each time point (represented by
points on the graphs). Environmental shifts were implemented by increasing both input values
by a fixed quantity Δenv on a logarithmic scale (e.g., lnx became lnx + Δenv). Shifting the envi-
ronment in this way reduces the fitness of cases relative to controls, but the reduction is limited
by the fact that both cases and controls suffer a fitness cost at large environmental shifts.
Parameter values were k = 0; s = 1; σdev = σenv = 0.05; σμ = 1; μ = 10−4.
(PDF)

S12 Fig. Effect of a sudden increase in selection on case epistasis and fitness. Simulations
were run with selection strength s = 1 (top row). At each time point, we temporarily increased
the strength of selection from s to s’ before averaging epistasis, Hind—hind, and relative fitness
over all cases (second through third rows). Under pure developmental noise (left column, top
row), all cases have reduced fitness relative to controls, reflecting the fact that the population is
centered at the corner. In contrast, under pure environmental noise (right column, top row),
values of case fitness extend upwards to 1 (and beyond), reflecting the fact that the population
is not necessarily centered on the corner. That is, when environmental noise shifts the popula-
tion so that most of its individuals have sub-optimal phenotype values, cases, which represent
the individuals with the highest phenotype values, will have higher fitness than controls. Since
increasing the strength of selection has little effect on high-fitness individuals, it can have a sub-
stantial impact on the relative fitness of cases and controls (second through third rows).
Parameter values were k = 0 and σμ = 1.
(PDF)

S1 Text. Formulation and analysis of mathematical models.
(PDF)
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